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Abstract – In this paper, we focus on a particular matrix 

representation of a graph to understand the structure of 

graph and using spectral analysis we will devise theorems 

based on normalized Laplacian matrix in order to prove 

that if matrixes of two graphs are similar then they are 

symmetric in spectral plane. 

Index Terms – Graph, Spectral Graph Theory, Linear Algebra, 

Matrix, Eigenvalue 

1. INTRODUCTION 

A graph, denoted by G, is a pair (V, E) of sets such that the 

elements of E are a collection element subsets of V. We call 

the elements of V the vertices of the graph, and the elements 

of E the edges of the graph. We use the notation xy to denote 

an edge {x, y}, for distinct x, y ∈V. The number of vertices |V 

| of a graph G is its order.                 

Spectral graph theory is the study of properties of a graph in 

relationship to the characteristic polynomial, eigenvalues, and 

eigenvectors of matrices associated to the graph, such as its 

adjacency matrix or Laplacian matrix.  

Given a graph G, we can form a matrix that contains 

information about the structure of the graph. Some of the 

most commonly studied matrix representations of graphs are 

the adjacency matrix, combinatorial Laplacian, sign-less 

Laplacian and the normalized Laplacian. The adjacency 

matrix of a graph G = (V, E ), denoted by A, is a matrix 

whose rows and columns are indexed by the vertices of G, 

and is defined to have entries 

A(x,y) =      1   if xy ∈ E, 

                    0   otherwise. 

The combinatorial Laplacian of a undirected graph G = (V, E 

) on n vertices without isolated vertices , denoted by L, is a 

matrix whose rows and columns are indexed by the vertices of 

G, and is defined to have entries 𝑑𝑥 if x = y, 

        L(x, y) =    −1   if xy ∈ E, 

                                           0   otherwise. 

This matrix is closely related to the adjacency matrix A of G. 

Let D be a diagonal matrix, whose rows and columns are 

indexed by the vertices of G, with diagonal entries D(x, x) = 

𝑑𝑥 hence, L = D − A. The matrix D + A is called the sign-less 

Laplacian of a graph and is denoted by |L|. It should denoted 

that the sign-less Laplacian is sometimes denoted by 𝐿+ or Q 

in the literature, however we will use Q to denote 𝐷−1A 

.Finally, the normalized Laplacian of a undirected graph G = 

(V, E) n vertices without isolated vertices, denoted by £, is a 

matrix whose rows and columns are indexed by the vertices of 

G, and is defined to have entries 

                1               if x=y and dy ≠ o, 

£(x,y) =   -1⁄√𝑑𝑥𝑑𝑦  if xy ∈ E, 

                0               otherwise.   

In this paper we focus on the spectrum of the normalized 

laplacian matrix of a graph because Study of the relations 

between eigenvalues and structures in graphs is the heart of 

spectral graph theory. We use the superscript notation (𝑚𝑖) to 

mean that 𝜆𝑖 appears in the spectrum with multiplicity 𝑚𝑖 and 

throughout this thesis we assume that graph is simple and 

there is no isolated vertex. 

 Normalized Laplacian 

 Eigen Values Of The Normalized Laplacian 

1.1 Normalized Laplacian 

The final type of matrix that we will consider is the 

normalized Laplacian matrix denoted L. As the name suggests 

this is closely related to the combinatorial Laplacian that we 

have just looked at. For graphs with no isolated vertices the 

relationship is given by 

 L = D−1/2LD−1/2 = D−1/2 (D − A) D−1/2 = I − D−1/2AD−1/2.  

Throughout the rest of this and ensuing chapters we will 

usually assume no isolated vertices since they contribute little 

more than technicalities to the arguments.) Entry wise we 

have, 

                             1          if i = j; 

           Li,  j =      -1⁄√𝑑i𝑑j   if i is adjacent to j; 

                            0           otherwise. 

For graphs with isolated vertices we let the diagonal entries of 

that vertex be 0. This gives the nice property that the 

multiplicity of the eigenvalue 0 is the number of connected 

components of the graph. 
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with eigenvalues  1.72871355 . . . , 1.5, 1, 0.77128644 . . . , 0. 

As before we have that 0 is an eigenvalue (now with 

eigenvector D1/21) and the remaining eigenvalues are 

nonnegative. A major difference between the two spectra 

though is that while for the combinatorial Laplacian the 

eigenvalues can be essentially as large as desired (in particular 

between 0 and twice the maximum degree), the normalized 

Laplacian has eigenvalues always lying in the range between 

0 and 2 inclusive as shown by Chung. One advantage to this 

is that it makes it easier to compare the distribution of the 

eigenvalues for two different graphs, especially if there is a 

large difference in the “size” of the graphs. 

1.2 Eigen Values Of The Normalized Laplacian 

The normalized Laplacian is a rather new tool which has 

rather recently (mid 1990's) been popularized by Chung. One 

of the original motivations for defining the normalized 

Laplacian was to be able to deal more naturally with non- 

regular graphs. In some situations the normalized Laplacian is 

a more natural tool that works better than the adjacency 

matrix or combinatorial Laplacian.  Q = D-1A is the transition 

matrix of a Markov chain which has the same eigenvalues as I 

- L. 

Let G be a graph of order n. As L is a real symmetric matrix, 

the eigenvalues are real numbers. We note that normalized 

Laplacian L of G is a positive semidefinite matrix. To see 

this, let S be the matrix, whose rows are indexed by the 

vertices of G and whose columns are indexed by the edges of 

G (where each edge e = xy is thought of as an ordered 2-tuple 

e = (x, y), that has entries 

                       1⁄√𝑑𝑥   if e = xy and u = x, 

S (u, e) =      -1⁄√𝑑𝑦   if e = xy and u = y, 

                       0          otherwise. 

The choice of signs can actually be arbitrary so long as in 

each column (corresponding to an edge of G) there is one 

positive entry and one negative entry. Then L = SST 

.Therefore all of the eigenvalues of L are nonnegative. Recall 

that D is the diagonal matrix of vertex degrees of a graph, 

namely, 

                 D (u, v) =     du   if u = v, 

                                      0   otherwise 

It is easy to see that D1/21 is an eigenvector of L with 

eigenvalue 0. Thus, we assume the eigenvalues of L are 

                         0 = λ1(L) ≤ λ2(L) ≤ … ≤ λn(L)  

For graphs without isolated vertices, the normalized Laplacian 

L has the following relationship to L, A and D        

                             L = D-1/2LD-1/2; 

                         = D-1/2(D - A) D-1/2; 

                         = I – D-1/2AD-1/2. 

0 experiment with sudden breaks and gaps in the music. This 

will give the music more punch and keep people dancing. 

2. RELATED WORK 

In 2003, Haemers et al. conducted a survey of answers to the 

question of which graphs are determined by the spectrum of 

some matrix associated to the graph. In particular, the usual 

adjacency matrix and the Laplacian matrix were addressed. 

Furthermore, the authors formulated some research questions 

on the topic. In the meantime, some of these questions have 

been (partially) answered. In the present paper the authors 

give a survey of these and other developments. 

In 2006, Ivan Gutman and Bo Zhou described about graph in 

which let G be a graph with n vertices and m edges. Let λ1, 

λ2, … , λn be the eigenvalues of the adjacency matrix of G, 

and let μ1, μ2, … ,μn be the eigenvalues of the Laplacian 

matrix of G . An earlier much studied quantity is the E (G) = 

∑  (λ𝑖)
𝑛=1
𝑛=0  energy of the graph G. The authors now define and 

investigate the Laplacian energy as 

                       LE (G) = ∑ |𝜇𝑖 − 2m/n|N=1
n=0 .  

There is a great deal of analogy between the properties of E 

(G) and LE (G), but also some significant differences. 

In 2010, Cavers M. considered the energy of a simple graph 

with respect to its normalized Laplacian eigenvalues, which 

the authors call the L-energy. Over graphs of order n that 

contain no isolated vertices, the authors characterize the 

graphs with minimal L-energy of 2 and maximal L-energy of 

2bn/2c. 

3. PORPOSED MODELLING 

There are many reasons for this, such as the limitation of 

finding eigenvalues of general graph. By introducing new 

theorems we will be able to calculate the eigenvalues of 

general graph and relevant algorithm for its system 

implementation. The purpose is to build programs to run on 

computer system. 
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4. RESULTS AND DISCUSSIONS 

As I have discussed the limitation of finding eigenvalues of 

general graph. To find out Eigen value of general graph I am 

proposing two theorems with their algorithms and 

implementation. Following are the theorems: 

 Theorem 1 

 Theorem 2 

3.1 Theorem 1 

Let G be a graph having vertices 𝑥1, 𝑥2, . . . . . . . . . , 𝑥𝑛 

satisfying that 𝑥𝑖 is adjacent to 𝑘𝑖 (>1) number of vertices of 

degree one, i = 1, 2, . . . . n. then 1 is an Eigen value of (G) 

With multiplicity at least    ∑ (𝐾𝑖 − 1)N=1
n=0 .  

3.2 Theorem 2 

Let G be a graph having a pair of vertices x and y with deg x 

= deg y and satisfying the following conditions. 

 Both x and y are having m (>1) number of degree 

one neighbours. 

 x and y are having k (≥ 1) no of common neighbours. 

Then normalized laplacian £ (G) will have Eigen value  

                           (1 ± √𝑚/𝑚+𝑘﴿ 

5. CONCLUSION 

This paper provides a broad idea about the now research 

related to find out eigen values of normalized  laplacian 

matrix gives eigenvalue only those graph which follow some 

pattern like cyclic graph ,path, regular graph, bipartite graph.  
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